Accueil du site Accueil du site Adhésion Contact Plan du site

Prédiction structurée pour l’analyse syntaxique en constituants par transitions : modèles denses et modèles creux

Maximin Coavoux* et Benoît Crabbé*, **

* Univ. Paris Diderot, Sorbonne Paris Cité, Alpage (Inria), Bât. Olympe de Gouges, 8 Place Paul Ricoeur, 75013 Paris

** Institut Universitaire de France


L’article présente une méthode d’analyse syntaxique en constituants par transitions qui se fonde sur une méthode de pondération des analyses par apprentissage profond. Celle-ci est comparée à une méthode de pondération par perceptron structuré, vue comme plus classique. Nous introduisons tout d’abord un analyseur syntaxique pondéré par un réseau de neurones local et glouton qui s’appuie sur des plongements. Ensuite nous présentons son extension vers un modèle global et à recherche par faisceau. La comparaison avec un modèle d’analyse de la famille perceptron global et en faisceau permet de mettre en évidence les propriétés étonnamment bonnes du modèle neuronal à recherche gloutonne.


Télécharger:
Coavoux-TAL57-1,775 PDF
Maximin Coavoux et Benoît Crabbé,
423 ko


Date de dernière mise à jour : 5 septembre 2016, auteur : Rédacteurs en chef.