Accueil du site Accueil du site Adhésion Contact Plan du site

Street-Level Geolocation From Natural Language Descriptions

Nate Blaylock*, James Allen**, William de Beaumont**, Lucian Galescu**, Hyuckchul Jung***

* Nuance Communications
nate.blaylock@nuance.com

** Florida Institute for Human and Machine Cognition (IHMC)
[jallen,wbeaumont,lgalescu,hjung]@ihmc.us

*** AT&T Labs - Research, Shannon Laboratory
hjung@research.att.com


In this article, we describe the TEGUS system for mining geospatial path data from natural language descriptions. TEGUS uses natural language processing and geospatial databases to recover path coordinates from user descriptions of paths at street level. We also describe the PURSUIT Corpus - an annotated corpus of geospatial path descriptions in spoken natural language. PURSUIT includes the spoken path descriptions along with a synchronized GPS track of the path actually taken. Finally, we describe the performance of several variations of TEGUS (based on graph reasoning, particle filtering, and dialog) on PURSUIT.


Télécharger:
Fichier PDF
Nate Blaylock, James Allen, William de Beaumont, Lucian Galescu, Hyuckchul Jung
1.2 Mo

TAL Volume 53 2012 . 2. Traitement automatique des informations temporelles et spatiales en langage naturel

Date de dernière mise à jour : 12 février 2016, auteur : Rédacteurs en chef.